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ABSTRACT 

Inventory is essential for the efficient running of any business. Single location inventory system is considered by 

many researchers. This paper deals with two echelon inventory system with handling two products having joint ordering 

policy. The demand for the products follows independent poison distributions at retailer and distributor node. The items are 

supplied to the retailers from the distribution center (DC) administrated with exponential lead time having parameter µ 

(>0). The joint probability disruption of the inventory levels of two products at retailer and the supplier are obtained in the 

steady state case. Various system performance measures are derived and the long run total expected inventory cost rate is 

calculated. Several instances of numerical examples, which provide insight into the behavior of the system, are presented.  
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1. INTRODUCTION 

Inventory control system in two-echelon or multi echelon has been considered by many researchers. Most of the 

papers the authors concentrate on periodic review inventory system. A first quantitative model to find an optimal (s, S) 

inventory policies for single item at single location is considered by Veinott and Wagner[10]. Thangaraj and 

Ramanarayanan[9] develop an inventory model with two re-order levels and random lifetime. Gross and Harris [7] 

considered the inventory system with state dependent lead times. All the above papers deals only with single location 

inventory system. This paper deals with two echelon inventory system(retailer –lower echelon, distributor – higher 

echelon) handling two different products supplied by the same distributor. 

Anbazhagan and Arivarignan [1] have analyzed two commodity inventory system under various ordering policies. 

Yadavalli et. al., [11] have analyzed a model with joint ordering policy and varying order quantities. Yadavalli et. al., [12] 

have considered a two commodity substitutable inventory system with Poisson demands and arbitrarily distributed lead 

time.  

In a very recent paper, Anbazhagan et. al. [2] considered analysis of two commodity inventory system with 

compliment for bulk demand in which, one of the items for the major item, with random lead time but instantaneous 

replenishment for the gift item are considered. The lost sales for major item is also assumed when the items are out of 

stock. The above model is studied only at single location(Lower echelon). We extend the same in to multi-echelon 

structure (Supply Chain)with joint ordering policy. The rest of the paper is organized as follows. The model formulation is 

described in section 2, along with some important notations used in the paper. In section 3, steady state analysis are done: 
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Section 4 deals with the derivation of operating characteristics of the system. In section 5, the cost analysis for the 

operation. Section 6 provides Numerical examples and sensitivity analysis. 

2. MODEL 

2.1. The Problem Description 

The inventory control system considered in this paper is defined as follows. We assume that finished products are 

supplied from warehouse to distribution centre (DC) which adopts (0, M) replenishment policy then the product is supplied 

to retailer (R) who adopts (si, Qi) policy. The demands at retailer node follows independent Poisson distribution with rate   

λi (i = 1, 2). The items are supplied to the retailers in packs of Q (Q = Q1+Q2) where Qi (= Si-si) from the distribution center 

(DC) administrated with exponential lead time having parameter µ (>0). The direct demand at distributor node follows 

Poisson distribution with rate λD. The replenishment of items in terms of pockets is made from WH to DC is instantaneous. 

Demands that occur during the stock out periods are assumed to be lost sales. In this model the maximum inventory level 

at retailer node Si is fixed and he reorder level is fixed as si for the i-th commodity and the ordering policy is to place order 

for Qi (= Si-si) items (i = 1, 2) when both the inventory levels are less than or equal to their respective reorder levels. The 

maximum inventory level at DC is M (M = nQ). The joint probability distribution for both commodities is obtained in 

steady state cases. 

The optimization criterion is to minimize the total cost rate incurred at all the location subject to the performance 

level constrains. According to the assumptions the on hand inventory levels at all the nodes follows a random process. 

2.2. Analysis 

Let Ii(t), (i = 1, 2,3) denote the on-hand inventory levels for commodity-1, commodity-2 at retailer node and 

Distribution Centre (DC) respectively at time t+. From the assumptions on the input and output processes, I(t) = { Ii(t); t≥ 

0}(i = 1, 2,3) is a Markov process with state space 

(i, k , m )  / i S , (S 1),  ... , s , (s 1),  ... , 2 ,1,0 . , 1 1 1 1

E k  S , (S 1),  ... , s , (s 1),  ... , 2 ,1, 0 . 2 2 2 2

m   nQ ,(n-1)Q ,  ... ,Q  

= − − 
  = = − − 
 

=    

Since E is finite and all its states are recurrent non-null, I(t) = { Ii(t); t ≥ 0}is an irreducible Markov process with 

state space E and it is an ergodic process. Hence the limiting distribution exists and is independent of the initial state. The 

infinitesimal generator of this process  

(i,k,m),( j,l,n) ER (a(i,k,m: j,l,n)) ∈=
 

can be obtained from the following arguments. 

• The arrival of a demand for commodity-1 at retailer node makes a state transition in the Markov process from      

(i, k, m) to (i-1, k, m) with intensity of transition λ1. 

• The arrival of a demand for commodity-2 at retailer node makes a state transition in the Markov process from      

(i, k, m) to (i, k-1 m) with intensity of transition λ2. 
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• The arrival of a demand at distributor node makes a state transition in the Markov process from (i, k, m) to (i, k 

m-Q) with intensity of transition λD. 

• Joint Replenishment of inventory for commodity-1and commodity-2 at retailer node makes a state transition in the 

Markov process from (i, k, m) to (i+Q1, k+Q2, m-Q) with intensity of transition µ .where Q = Q1+Q2 

The infinitesimal generator R is given by  



























=

A000B

BA000

00A00

00BA0

000BA

   R

⋯

⋯

⋮⋮⋮⋮⋮⋮

⋯

⋯

⋯

 

The entities of matrix R are given by 

[ ]pxq

A   if   p = q                  ; p = nQ ,(n-1)Q,  ... , 3Q, 2Q.

B   if   p = q Q           ; p = nQ ,(n-1)Q, ... , 3Q, 2Q.
R

B   if   p = q (n 1)Q   ;  p = Q.

0     otherwise 


 +=  − −
   

The sub matrices of matrix R are given by  

[ ]

1 2 2 2 2

2 2 2 2

2 2 2pxq

A   if   p = q         ; p = S ,(S 1),(S 2),  ... ,(s 1).

A   if   p = q Q  ; p = S ,(S 1),(S 2),  ... , 1.

A A3   if    p = q       ; p = s ,  (s 1),((s 2),  ... 1.

A4   if    p = q        ; p = 0

0      

− − +
+ − −

= − −

 otherwise







  

     2 2 2if p = q + Q  ; q = s  , (s 1),  ... ,1,0
[B]  

 0         otherwise

µ −
= 
  

The sub matrices of matrix A are given by  

 1         1

1 2 D 1
1

2 D

    if p = q-1 ; q = 1,2, ... , S  

-( ) if p = q-1 ; q = 1,2, ... , S  
A

-( )        if p = q ; q = 0

 0            otherwise

λ
 λ + λ + λ=  λ + λ

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  2         1
2

if p = q-1 ; q = 1,2, ... , S  
A

 0         otherwise

λ
= 
  

1         1

1 2 D 1
3

2 D

           if p = q-1 ; q = 1,2, ... , S  

-( ) if p = q-1 ; q = 1,2, ... , S  
A

-( )        if p = q    ; q = 0

 0                   otherwise

λ
 λ + λ + λ + µ=  λ + λ + µ


 

1         1

1 2 D 1
4

D

     if p = q-1 ; q = 1,2, ... , S  

-( )  if p = q-1 ; q = 1,2, ... , S  
A

-( )         if p = q    ; q = 0

 0            otherwise

λ
 λ + λ + λ + µ=  µ + λ


 

4.2.3 Transient Analysis 

Define the transient probability function  

p(i, k, m)(j, l, n : t) = pr {(I 1(t), I2(t), I3(t)) = (j, l, n) | (I1(0), I2(0), I3(0)) = (i, k, m)}. 

The transient matrix for t ≥ 0 is of the form P(t) = (p(i, k, m) (j, l, n : t))(i, k, m)(j, l, n)∈E satisfies the Kolmogorov- 

forward equation P (t) P(t).R′ = , where R is the infinitesimal generator of the process{I(t), t 0}≥ . From the above 

equation, together with initial conditionP(0)  I= , the solution can be express of the form
Rt RtP(t)  P(0)e e= = , 

where the matrix expansion in power series form is  

∑
∞

=
+=

1n

nn
Rt

n!

tR
Ie . 

4.2.4 Steady State Analysis 

The structure of the infinitesimal matrix R reveals that the state space E of the Markov process {I(t); t 0}≥  is 

finite and irreducible. Let the limiting probability distribution of the inventory level process be  

( ){ ( ) }m k
i 1 2 D

t

Pr  I (t), I (t), I (t) i,k,m  lim
→∞

Π = =  , 

where m k
iΠ  is the steady state probability that the system be in state (i,k,m), (Cinlar [5]).  

Let nQ (n 1)Q (n 2)Q 2Q Q ( , , , , .  )− −Π = Π Π Π Π Π  denote the steady state probability distribution, 

where ( )jQ k k k k
S S 1 1 0 , ,  ... , ,−Π = Π Π Π Π  for j = 1, 2 ... n and k = 1,2,…, S for the system under consideration. For each 

(i,k,m), m k
iΠ can be obtained by solving the matrix equation Π R = 0  

Since the state space is finite and R is irreducible, the stationary probability vector П for the generator R always 
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exists and satisfies 

ПR=0 and Пe=1 

The vector П can be represented by 

П = 
Q1,Q2 2Q1,2Q2 3Q1,3Q2 n1Q1,n2Q2( , , ,......,< > < > < > < >Π Π Π Π  

Now the structure of R shows, the model under study is a finite birth death model in the Markovian environment. 

Hence we use the Gaver algorithm for computing the limiting probability vector. For the sake of completeness we provide 

the algorithm here. 

4.2.5 Algorithm 

1. Determine recursively the matrix Dn, 0 ≤ n ≤ N by using 

D0 = 0A  

Dn = 1
n n n 1A B ( D ) C, n 1,2,....K−

−+ − =  

2. Slove the system 

N
ND 0< >Π =  

3. Compute recursively the vector
n , n N 1,....., 0< >Π = −  using  

П<n> = n 1 1
n 1 nB ( D ),n n 1,......,0< + > −

+Π − = −  

4. Re-normalize the vector П, using  

.1=Πe  

4.2.6. Operating Characteristics 

In this section, we derive some important system performance measures. 

(a) Mean Inventory Level  

Let ILR1 and ILR2 denote the expected inventory level in the steady state at retailer node for the commodity-1 and 

commodity-2, and ILD denote the expected inventory level at distribution centre. They are defined as  

ILR1 = 
2 1S SnQ

* i,k,m,o

m Q k 0 i 0

i <<< >>>

= = =
Π∑ ∑∑

                                                                                                                

(4.1) 

ILR2 = 
2 1S SnQ

* i,k,m,o

m Q k 0 i 0

k <<< >>>

= = =
Π∑ ∑∑

                                                                                                             

(4.2) 
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ILD = 
2 1S SnQ *

i,k,m,o

m Q k 0 i 0

m <<< >>>

= = =
Π∑ ∑∑ ; Q = Q1+Q2                                                                                          (4.3) 

 

(b) Mean Reorder Rate 

Consider the reorder events βR for both commodities at retailer node and βD of at distribution centre. It is observe 

that βD event occur whenever the inventory level at DC node reaches 0 whereas the event βR occurs whenever the 

inventory level at retailer node drops to either (s1,s2) or (s1,j),j < s2 or (i,s2),i < s1. 

The mean reorder rate at retailer node and distribution centre are given by  

BR = 
2 1

1 2

s snQ
s 1,k,m  i,s 1,m

1 2
m Q k 0 i 0

( ) ( )<<<< + >>>> + <<< + >>>

= = =

 
λ Π λ Π  

 
∑ ∑ ∑

                                                     

(4.4) 

BD = 
2 1s s

i,k,Q
D

k 0 i 0

( ) <<<< >>>>

= =
µ + λ Π∑∑                                                                                                           (4.5) 

(c) Mean Shortage Rate 

Shortage occurs only at retailer node and the mean shortage rate at retailer is denoted by αR which is given by  

2 1S SnQ

R 1 2
m Q k 0 k 0

0,k,m
*

    ( ) ( i,0,m)
= = =

 
α = λ + λ 


Π <<< >>> Π <<


< >>>∑ ∑ ∑                                                  (4.6) 

4.2.7 Cost Analysis 

In this section we analyze the cost structure for the proposed models by considering the minimization of the 

steady state total expected cost per time.  

The long run expected cost rate for the model is defined to be 

R1 R1 R 2 R 2 D D r R D D R RC(s,Q) h IL h IL h IL k B k B g= + + + + + α                                                     (4.7) 

where  

• hR1, hR2, and hD are the holding cost per unit of item of Commodity- 1, Commodity-2 at retailer node and holding 

cost per unit items (Q items, Q = Q1+Q2) at distribution centre respectively per unit time.  

• IL R1, IL R2, and IL D are the inventory level of Commodity- 1, Commodity- 2 at retailer node and inventory level 

at distribution centre respectively per unit time. 

• K r, and KD are the Fixed ordering cost at retailer node distribution centre respectively. 

• BR and BD are the mean reorder rate at retailer node and distribution centre. 

• αR is the mean shortage rate at retail node. 
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• gR is the shortage cost per unit shortage at retailer node. 

Although, we have not proved analytically the convexity of the cost function TC(s1,s2 Q) ,our experience with 

considerable number of numerical examples indicates that TC(s1,s2 Q) for fixed Q to be convex in s. In some cases, it 

turned out to be an increasing function of s. Hence, we adopted the numerical search procedure to determine the optimal 

values s*, consequently, we obtain optimal n*. For large number of parameters, our calculation of TC(s1,s2 Q) revealed a 

convex structure for the same.  

5. NUMERICAL ILLUSTRATION 

In the section the problem of minimizing the long run total expected cost per unit time under the following cost 

structure is considered for discussion. The optimum values of the system parameters s1 and s2 are obtained and the sensitive 

analysis is also done for the system. 

The results we obtained in the steady state case may be illustrated through the following numerical example, 

S1=20, S2 = 25, M= 200, 1 23, 4= =λ λ , 2=Dλ , 3=µ
 

1.1, 1.2, 1.5, 1.3= = = =R D R dh h k k 2.1, 2.2, 2.3= = =R D og g C
. 

The cost for different reorder level are given by 

Table 1: Total Expected Cost Rate as a Function S1, S2 and Q 

s1 2 3 4 5* 6 7 8 
s2 3 4 5 6* 7 8 9 

Q=(Q1,+ Q2) 40 38 36 34 32 30 28 
TC(s1,s2 Q) 115.7454 105.8264 90.5506 87.90082* 94.28986 110.392 123.6665 

 
For the inventory capacity S, the optimal reorder level s* and optimal cost TC (s1, s2, Q) are indicated by the 

symbol *. The Convexity of the cost function is given in the graph. 

 

Figure 1: Total Expected Cost Rate as a Function TC (S1, S2, Q), S1, S2 and Q 

1.1. Sensitivity Analysis 

The effect of changes in Demand rate at retailer node for product 1 and 2. 

Table 2: Total Expected Cost Rate as a Function When Demand Increases 

 λ2 = 8 λ2 = 10 λ2 = 12 λ2 = 14 λ2 = 16 

λ1 = 12 45.073539 46.419603 47.214733 47.629158 47.785721 
λ1 = 14 46.271834 47.617898 48.413028 48.827452 48.984016 



50                                                                                                                                                                                            R. Karthikeyan & K. Krishnan 

 
www.iaset.us                                                                                                                                                     editor@iaset.us 

λ1 = 16 47.136498 48.482562 49.277692 49.692117 49.848680 
λ1 = 18 47.793130 49.139194 49.934324 50.348749 50.505312 
λ1 = 20 48.325884 49.671948 50.467078 50.881502 51.038066 

 
The graph of the demand rate variation is given below and it describes, if the demand rate increases then the total 

cost also increases. 

 

Figure 2: TC (S1, S2, Q) for Different Demand Rates 

Table 3: Total Expected Cost Rate as a Function When S1 and S1 Increases 

 S1=2 S1=4 S1=6 S1=8 S1=10 
S1=45 111.998164 118.761642 124.799813 130.664478 136.843108 
S1=50 118.699318 124.359054 129.299781 133.996082 138.773110 
S1=55 123.090318 127.562168 131.434202 135.090008 138.765317 
S1=60 125.576395 129.128145 132.243072 135.192545 138.137225 
S1=65 126.984419 130.065937 132.851239 135.511516 138.145444 

 

 

Figure 3: TC (S1, S2, Q) For Different S1 and S1 Values 

From the graph it is identified that the total cost increases when the s and S increases. 

Table 4: Total Expected Cost Rate as a Function When S1 and S2 Increases 

 S2=30 S2=35 S2=40 S2=45 S2=50 
S1=20 189.8666 179.2934 165.6356 152.2989 141.219 
S1=25 195.0113 186.1366 173.264 159.6361 147.8542 
S1=30 199.5703 192.4455 180.7208 167.1007 154.6623 
S1=35 203.6145 198.1655 187.8799 174.6251 161.6628 
S1=40 207.2345 203.2862 194.623 182.1144 168.8466 
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Figure 4: TC (S1, S2, Q) for Different S1 and S2 Values 

From the graph it is identified that the total cost decrease when S2 increases and increases when S1 increases  

 

Table 5: Total Expected Cost Rate When Hr and Hd Increases 

 hD=0.04 hD=0.08 hD=0.12 hD=0.16 hD=0.20 
hR=0.002 43.1924942 43.87908 44.5655 45.25206 45.93862 
hR=0.004 43.2037231 43.89028 44.5767 45.26326 45.94982 
hR=0.006 43.2149519 43.90148 44.58804 45.27446 45.96102 
hR=0.008 43.2261794 43.91268 44.59924 45.28566 45.97222 
hR=0.010 43.2374082 43.92388 44.61044 45.297 45.98342 

 

 

Figure 5: TC (S1, S2, Q) for Different H r and Hd Values 

As is to be expected the graph shows that the total cost increases when hR and hD increases 

Table 6: Total Expected Cost Rate When Gr and Kd Increases 

 gR=0.2 gR=0.4 gR=0.6 gR=0.8 gR=1.0 
kD=10 32.346268 33.06786 33.78945 34.51104 35.23264 
kD=15 34.204663 34.926255 35.64785 36.36944 37.09103 
kD=20 36.063058 36.78465 37.50624 38.22783 38.94943 
kD=25 37.921453 38.643045 39.36464 40.08623 40.80782 
kD=30 39.779848 40.50144 41.22303 41.94462 42.66622 
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Figure 6: TC (S1, S2, Q) for Different G R and KD Values 

As is to be expected the graph shows that the total cost increases when gR and kD increases. 

6. CONCLUSIONS 

This paper deals with a two echelon Inventory system with two The demand at retailer node follows independent 

Poisson with rate λ1 and λ2. The Joint replenishment ordering policy is applied at retailer node. The direct demand at 

distributor is assumed to be Poisson with rate λD. The structure of the chain allows vertical movement of goods from to 

supplier to Retailer. If there is no stock for product at retailer the demand is refused and it is treated as lost sale. The model 

is analyzed within the framework of Markov processes. Joint probability distribution of inventory levels at DC and Retailer 

for both products are computed in the steady state. Various system performance measures are derived and the long-run 

expected cost is calculated. By assuming a suitable cost structure on the inventory system, we have presented extensive 

numerical illustrations to show the effect of change of values on the total expected cost rate. It would be interesting to 

analyze the problem discussed in this paper by relaxing the assumption of exponentially distributed lead-times to a class of 

arbitrarily distributed lead-times using techniques from renewal theory and semi-regenerative processes. Once this is done, 

the general model can be used to generate various special eases. 
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